New technology maps movement of microscopic algae vital to ocean health – ScienceDaily

Thanks to new technology developed at the University of Exeter, the movement patterns of microscopic algae can be mapped in more detail than ever before, providing new insights into the health of the oceans.

The new platform allows scientists to study the movement patterns of microscopic algae in unprecedented detail. Findings could have implications for understanding and preventing harmful algal blooms, as well as developing algal biofuels that could one day provide an alternative to fossil fuels.

Microscopic algae play key roles in ocean ecosystems, forming the basis of aquatic food webs and sequestering most of the world’s carbon. The health of the oceans therefore depends on maintaining stable algal communities. There are growing concerns that changes in ocean composition, such as B. acidification, the spread of algae and the composition of the community could disturb. Many species move and swim around to find sources of light or nutrients to maximize photosynthesis.

The new microfluidic technology, now released in eLife, will allow scientists for the first time to capture and image individual microalgae floating in microdroplets. The state-of-the-art development has enabled the team to study how microscopic algae explore their microenvironment and to track and quantify their behavior over the long term. Importantly, they characterized how individuals differ from one another and respond to sudden changes in their habitat composition, such as the presence of light or certain chemicals.

The lead author Dr. Kirsty Wan, from the University of Exeter’s Living Systems Institute, said: “This technology means we can now probe and expand our understanding of swimming behavior for any microscopic organism in a way that was previously not possible. This will help us understand how they control their swimming patterns and their potential to adapt to future climate change and other challenges.”

In particular, the team discovered that the presence of interfaces with high curvature, combined with the microscopic corkscrew swimming of the organisms, induces macroscopic chiral motion (always clockwise or counterclockwise) seen in the average trajectory of cells.

The technology has a wide range of applications and could represent a new way to classify and quantify not only the environmental intelligence of cells but also complex behavioral patterns in any organism, including animals.

dr Wan added: “Ultimately, we aim to develop predictive models for the swimming and cultivation of microbial and microalgal communities in each relevant habitat, leading to a deeper understanding of current and future marine ecology.” Therefore, knowing the detailed behavior that occurs at the level of individual cells is an important first step.”

story source:

Materials provided by University of Exeter. Note: Content can be edited for style and length.

About admin

Check Also

The Tech Weekender: This week’s top tech news – Moneycontrol

The 2022 Privacy Bill draft is here, Apple may not be as privacy-minded as you …

Leave a Reply

Your email address will not be published. Required fields are marked *